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This paper introduces a new four-parameter lifetime model called the Marshall-Olkin generalized 

Fréchet (MOGFr) distribution. We derive some of its mathematical properties including quantile 

and generating functions, ordinary and incomplete moments, mean residual lifetime and mean 

waiting time and order statistics. The MOGFr density can be expressed as a linear mixture of 

Fréchet densities. The maximum likelihood method is used to estimate the MOGFr parameters. 

Using two applications, we illustrate the flexibility and importance of the MOGFr distribution in 

modeling various types of lifetime data. 

 

Keywords: Fréchet distribution, Maximum likelihood, Mean residual life, Moments, Order 

statistics.  

 

 

1. Introduction 

 

The Fréchet distribution (Fréchet, 1942), also known as type II extreme value 

distribution, has many applications in extreme value theory as an important 

distribution in extreme value theory.The Fréchet distribution has applications in 

stochastic phenomena such as rainfall, floods, air pollution (see, Kotz and 

Nadarajah, 2000). Further, Harlow (2002) and Zaharim et al. (2009) applied Fréchet 

distribution in engineering applications and in analyzing wind speed data, 

respectively. To explore more informations about applications of Fréchet 

distribution see, e.g. Kotz and Nadarajah (2000) and Resnick (2013). 

 

Recently, the statisticians have proposed various extensions of the Fréchet 

distribution to increase its flexibility. For example, the exponentiated Fréchet 

(Nadarajah and Kotz, 2003), Beta Fréchet (Nadarajah and Gupta, 2004), Marshall-

Olkin Fréchet (Krishna et al., 2013), transmuted exponentiated Fréchet (Elbatal et 

al., 2014), transmuted Marshall-Olkin Fréchet (Afify et al., 2015), Kumaraswamy 

Marshall-Olkin Fréchet (Afify et al. 2016a), Weibull Fréchet (Afify et al., 2016b), 

beta exponential Fréchet (Mead et al., 2017) and Burr X Fréchet (Abouelmagd et al., 

2018) distributions, among others. 



The survival function (SF) and probability density function (PDF) of the Fréchet (Fr) 

distribution are given (for 𝑥 > 0) by 

 

𝐺(𝑥; 𝛼, 𝛽) = 1 − exp(−𝛼𝛽𝑥−𝛽) and 𝑔(𝑥; 𝛼, 𝛽) = 𝛽𝛼𝛽𝑥−𝛽−1exp(−𝛼𝛽𝑥−𝛽), (1) 

where 𝐺(𝑥; 𝛼, 𝛽) = 1 − 𝐺(𝑥; 𝛼, 𝛽) and 𝛼 > 0 is a scale parameter and 𝛽 > 0 is a 

shape parameter. 

 

Our aim in this paper is to propose and study another extension of the Fréchet model 

called the Marshall-Olkin generalized Fréchet (MOGFr) distribution. Its main 

feature is that two additional positive shape parameters are inserted in Equation (1) 

to provide great flexibility for the generated model. Based on the Marshall-Olkin 

generalized-G (MOG-G) family (Yousof et al., 2018), we construct the four-

parameter MOGFr distribution and provide some of its mathematical properties. We 

prove that the MOGFr distribution is capable of modelling various shapes of data 

using two data sets. It can provide better fits than other nested and non-nested model 

in two real data applications. 

 

The remainder of this article is outlined as follows: In Section2, we define the 

MOGFr distribution and provide its special cases. We derive some mathematical 

properties of the MOGFr distribution including linear representation for its PDF, 

quantile and generating functions, ordinary and incomplete moments, mean residual 

life, mean waiting time and order statistics in Section 3. The maximum likelihood 

estimation method is discussed in Section 4. In Section 5, the MOGFr distribution is 

applied to two real data sets to illustrate its importance. Finally, in Section 6, we give 

some concluding remarks. 

 

2. The MOGFr distribution 

 

Consider the SF of a baseline model, 𝐺(𝑥; 𝛏) = 1 − 𝐺(𝑥; 𝛏) , with a parameter 

vector 𝛏, then the cumulative distribution function (CDF) MOG-G family is defined 

by 

 𝐹(𝑥; 𝛿, 𝜂, 𝛏) =
1−𝐺(𝑥,𝛏)𝜂

1−(1−𝛿)𝐺(𝑥,𝛏)𝜂
, 𝑥 ∈ ℝ. (2) 

where are two positive shape parameters representing the different patterns of the 

MOG-G family. 

The corresponding PDF and hazard rate function (HRF) of (2) are  

 

 𝑓(𝑥; 𝛿, 𝜂, 𝛏) =
𝛿𝜂𝑔(𝑥;𝛏)𝐺(𝑥,𝛏)𝜂−1

[1−(1−𝛿)𝐺(𝑥,𝛏)𝜂]
2 , 𝑥 ∈ ℝ (3) 



and 

   𝜏(𝑥; 𝛿, 𝜂, 𝛏) =
𝜂𝜋(𝑥;𝛏)

1−(1−𝛿)𝐺(𝑥,𝛏)𝜂
, 𝑥 ∈ ℝ, 

where 𝑔(𝑥; 𝛏) is the PDF of a baseline model, 𝜋(𝑥; 𝛏) = 𝑔(𝑥; 𝛏)/𝐺(𝑥, 𝛏) is the 

baseline HRF, 𝛿 and 𝜂 are positive shape parameters. The random variable 𝑋 with 

PDF (3) is denoted by 𝑋 ∼MOG-G(𝛿, 𝜂, 𝛏). For 𝜂 = 1, we have the Marshall-

Olkin-G family (Marshall and Olkin, 1997), for 𝛿 = 1, the MOG-G family reduces 

to the generalized-G family (Gupta et al., 1998), and for 𝛿 = 𝜂 = 1, we obtain the 

baseline distribution. 

 

Combining (1) and (2), we obtain the CDF of the MOGFr distribution 

 

 𝐹(𝑥; 𝛼, 𝛽, 𝛿, 𝜂) =
1−[1−exp(−𝛼𝛽𝑥−𝛽)]

𝜂

1−(1−𝛿)[1−exp(−𝛼𝛽𝑥−𝛽)]
𝜂 , 𝑥 > 0. (4) 

The PDF amd HRF of the MOGFr distribution are, respectively, given by 

 

 𝑓(𝑥; 𝛼, 𝛽, 𝛿, 𝜂) =
𝛿𝜂𝛽𝛼𝛽𝑥−𝛽−1exp(−𝛼𝛽𝑥−𝛽)[1−exp(−𝛼𝛽𝑥−𝛽)]

𝜂−1

{1−(1−𝛿)[1−exp(−𝛼𝛽𝑥−𝛽)]
𝜂

}
2 , 𝑥 > 0 (5) 

and     

 𝜏(𝑥; 𝛼, 𝛽, 𝛿, 𝜂) =
𝜂𝛽𝛼𝛽𝑥−𝛽−1exp(−𝛼𝛽𝑥−𝛽)

[1−exp(−𝛼𝛽𝑥−𝛽)]−(1−𝛿)[1−exp(−𝛼𝛽𝑥−𝛽)]
𝜂+1 , 𝑥 > 0, 

where 𝛼, 𝛽, 𝛿 and 𝜂 are positive shape parameters. The random variable 𝑋 having 

PDF (5) is denoted by 𝑋 ∼MOGFr(𝛼, 𝛽, 𝛿, 𝜂). The MOGFr distribution contains 

eleven special cases which are listed in Table 1. 

 

Table 1: Special cases of the MOGFr distribution 

𝛼 𝛽 𝛿 𝜂  Distribution  

𝛼 𝛽 1 𝜂 
 Exponentiated Fr (Nadarajah and Kotz, 

2003)  

𝛼 𝛽 𝛿 1  Marshall-Olkin Fr (Krishna et al., 2013)  

𝛼 1 𝛿 𝜂  MOG-inverse exponential (MOGIEx)  

𝛼 2 𝛿 𝜂  MOG-inverse Rayleigh (MOGIR)  

𝛼 1 1 𝜂  Exponentiated IEx (EIEx)  

𝛼 2 1 𝜂  Exponentiated IR (EIR)  

𝛼 1 𝛿 1  Marshall-Olkin IEx (MOIEx)  

𝛼 2 𝛿 1  Marshall-Olkin IR (MOIR)  

𝛼 𝛽 1 1  Fr  

𝛼 1 1 1  IEx  

𝛼 2 1 1  IR  



Some plots of the PDF and HRF of the MOGFr distribution for some parameter 

values are displayed in Figure 1. The plots show that the PDF of the MOGFr model 

can be left skewed or right skewed and the MOGFr HRF can be decreasing, 

increasing and upside down bathtub. 

 

 
Figure 1: Plots of the PDF and HRF of the MOGFr distribution  

 

3. Properties of the MOGFr distribution 

 

In this section, we derive some mathematical properties of the MOGFr distribution 

including linear representation for its PDF, ordinary and incomplete moments, mean 

residual life, mean waiting time, quantile and moment generating functions and 

order statistics. 

 

3.1 Linear representation 

 

Yousof et al. (2018) derived a useful linear representation of the CDF of the MOG-

G family as 

 𝐹(𝑥) = ∑ 𝑑𝑘  𝐺(𝑥)𝑘∞
𝑘=0 , 

where 𝑑0 = (2/𝛿) and for 𝑘 ≥ 1, we have 

 𝑑𝑘 =
1

𝛿
(𝑎𝑘 −

1

𝛿
∑ 𝑏𝑟𝑑𝑘−𝑟

𝑘
𝑟=1 ), 

where 𝑎𝑘 = (−1)𝑘+1 (
𝜂
𝑘

) and 𝑏𝑟 = (1 − 𝛿)(−1)𝑟+1 (
𝜂
𝑟

). 

Then, the PDF of the MOG-G family can also be expressed as 

 

 𝑓(𝑥) = ∑ 𝑑𝑘+1 ℎ𝑘+1(𝑥),∞
𝑘=0  



where ℎ𝑘+1(𝑥)  denotes the exp-G density with positive power parameter 𝑘. 

Hence, the MOGFr density can be rewritten as 

 𝑓(𝑥) = ∑ 𝑑𝑘+1(𝑘 + 1)𝛽𝛼𝛽𝑥−𝛽−1exp[−(𝑘 + 1)𝛼𝛽𝑥−𝛽].∞
𝑘=0  

Then, the PDF of the MOGFr reduces to 

 

 𝑓(𝑥) = ∑ 𝑑𝑘+1𝑔𝛼(𝑘+1)(𝑥),∞
𝑘=0  (6) 

where 𝑔𝛼(𝑘+1)(𝑥)  is the Fr PDF with shape parameter 𝛽  and scale parameter 

𝛼(𝑘 + 1)1/𝛽. Equation (6) reveals that many properties of the MOGFr distribution 

can be derived from the Fr properties. 

 

Let 𝑌 be a random variable with Fr distribution (1) with parameters 𝛼 > 0 and 

𝛽 > 0. The 𝑠th ordinary and incomplete moments of 𝑌 are given (for 𝑠 < 𝛽) by 

 𝜇𝑠,𝑌
′ = 𝛼𝑠 Γ (1 −

𝑠

𝛽
)       and        𝜑𝑠,𝑌(𝑡) = 𝛼𝑠𝛾 (1 −

𝑠

𝛽
, (

𝛼

𝑡
)

𝛽

), 

respectively, where Γ(𝑏) = ∫
∞

0
𝑧𝑏−1 𝑒−𝑧𝑑𝑧 is the complete gamma function and 

𝛾(𝑏, 𝑡) = ∫
𝑡

0
𝑧𝑏−1 𝑒−𝑧𝑑𝑧 iis the lower incomplete gamma function. 

 

3.2 Ordinary and incomplete moments 

 

The 𝑛th ordinary moment of 𝑋 is given by 

 𝜇𝑛
′ = 𝐸(𝑋𝑛) = ∑ 𝑑𝑘+1

∞
𝑘=0  ∫

∞

−∞
 𝑥𝑛 𝑔𝛼(𝑘+1)(𝑥)𝑑𝑥. 

Then, we obtain 

 𝜇𝑟
′ = ∑ 𝑑𝑘+1

∞
𝑘=0 𝛼𝑛(𝑘 + 1)𝑛/𝛽  Γ (1 −

𝑛

𝛽
) , 𝑛 < 𝛽. (7) 

The mean of 𝑋 follows by setting 𝑛 = 1 in (7). 

 

In Table 2 we provide numerical values for the mean, variance, skewness and kurtosis 

of the MOGFr distribution, for some selected parameter values of 𝛽, 𝛿  and 𝜂 with 

𝛼 = 1, to illustrate their effects on these measures. Table 2 shows that, for fixed 𝛿 

and 𝜂, the mean, variance, skewness and kurtosis are decreasing functions of 𝛽. For 

fixed 𝜂 and 𝛽, the mean and variance are increasing functions of 𝛿, whereas the 

skewness and kurtosis are decreasing functions of 𝛿. Further, for fixed 𝛿 and 𝛽, the 

mean, variance, skewness and kurtosis are decreasing functions of 𝜂. One can see, 

from Table 2, that the MOGFr distribution can be left skewed or right skewed. Further, 

it can be platykurtic (kurtosis < 3) or leptokurtic (kurtosis > 3). Hence, the MOGFr 

model is a flexible distribution and can be used in modeling skewed data. 

 

 



Table 2: Mean, variance, skewness and kurtosis of the MOGFr distribution (𝛼 = 1) 

𝛿 𝜂 𝛽 Mean Variance Skewness Kurtosis 

1.5 2.5 2.0 1.0196 0.2048 2.8718 32.7633 

  3.5 0.9917 0.0530 1.4555 8.1189 

  5.0 0.9890 0.0245 1.1092 5.8661 

  25 0.9959 0.0009 0.6011 3.8548 

2.5 2.5 2.0 1.1414 0.2606 2.7173 30.5582 

  3.5 1.0570 0.0622 1.3299 7.5596 

  5.0 1.0339 0.0279 0.9860 5.4853 

  25 1.0047 0.0010 0.4753 3.6853 

5.0 2.5 2.0 1.333 0.3549 2.5632 28.6521 

  3.5 1.1547 0.0756 1.1945 7.0787 

  5.0 1.0998 0.0324 0.8489 5.1719 

  25 1.0171 0.0011 0.3267 3.5893 

1.5 3.5 2.0 0.8827 0.0948 1.7795 11.0211 

  3.5 0.9190 0.0304 1.0326 5.4945 

  5.0 0.9392 0.0151 0.8006 4.5172 

  25 0.9862 0.0006 0.4237 3.4871 

2.5 3.5 2.0 0.9691 0.1141 1.6447 10.2284 

  3.5 0.9692 0.0343 0.9102 5.1575 

  5.0 0.9747 0.0166 0.6789 4.2787 

  25 0.9935 0.0007 0.2989 3.3911 

5.0 3.5 2.0 1.1003 0.1435 1.5032 9.5439 

  3.5 1.0422 0.0394 0.7741 4.8936 

  5.0 1.0255 0.0184 0.5403 4.1144 

  25 1.0037 0.0006 0.1499 1.3065 

1.5 5.0 2.0 0.7815 0.0494 1.2201 6.4396 

  3.5 0.8606 0.0185 0.7310 4.2699 

  5.0 0.8979 0.0097 0.5604 3.7904 

  25 0.9778 0.0005 0.2661 3.2453 

2.5 5.0 2.0 0.8451 0.0568 1.0909 5.9964 

  3.5 0.8999 0.0202 0.6080 4.0605 

  5.0 0.9265 0.0104 0.4375 3.6480 

  25 0.9839 0.0005 0.1402 3.2214 

5.0 5.0 2.0 0.9390 0.0670 0.9494 5.6318 

  3.5 0.9561 0.0221 0.4675 3.9299 

  5.0 0.9666 0.0110 0.2943 3.5912 

  25 0.9923 0.0005 -0.0120 3.2971 

 



The 𝑛th incomplete moment of the MOGFr distribution follows using Equation (6) 

as 

 𝜑𝑛(𝑡) = ∫
𝑡

0
𝑥𝑛𝑓(𝑥)𝑑𝑥 = ∑ 𝑑𝑘+1

∞
𝑘=0 ∫

𝑡

0
 𝑥𝑛 𝑔𝛼(𝑘+1)(𝑥)𝑑𝑥. 

Then, we obtain 

 𝜑𝑛(𝑡) = ∑ 𝑑𝑘+1
∞
𝑘=0 𝛼𝑛(𝑘 + 1)𝑛/𝛽𝛾 (1 −

𝑛

𝛽
, (𝑘 + 1) (

𝛼

𝑡
)

𝛽

) , 𝑛 < 𝛽. (8) 

Setting 𝑛 = 1 in Equation (8), we obtain the first incomplete moment of 𝑋 

 𝜑1(𝑡) = ∑ 𝑑𝑘+1
∞
𝑘=0 𝛼(𝑘 + 1)1/𝛽𝛾 (1 −

1

𝛽
, (𝑘 + 1) (

𝛼

𝑡
)

𝛽

), (9) 

which has important applications related to the mean residual life, mean waiting 

time, Bonferroni and Lorenz curves. 

 

3.3 Mean residual lifetime and mean waiting time 

 

The mean residual life (MRL) (or life expectancy at age 𝑡) represents the expected 

additional life length for a unit, which is alive at age t and it is defined by 𝑚𝑋(𝑡) =
𝐸(𝑋 − 𝑡|𝑋 > 𝑡), 𝑡 > 0. 
The MRL of 𝑋, can be defined as 

 𝑚𝑋(𝑡) = [1 − 𝜑1(𝑡)]/𝑆(𝑡) − 𝑡, (10) 

where 𝑆(𝑡) = 1 − 𝐹(𝑥) is the SF of the MOGFr distribution and 𝜑1(𝑡) is given in 

(9). 

By substituting (9) in Equation (10), we have MRL of the MOGFr distribution as 

 𝑚𝑋(𝑡) =
1

𝑆(𝑡)
∑ 𝑑𝑘+1

∞
𝑘=0 𝛼(𝑘 + 1)1/𝛽𝛾 (1 −

1

𝛽
, (𝑘 + 1) (

𝛼

𝑡
)

𝛽

) − 𝑡. 

The mean waiting time (MWT) (or mean inactivity time) is defined by 𝑀𝑋(𝑡) =
𝐸[𝑡 − 𝑋|𝑋 ≤ 𝑡], 𝑡 > 0, represents the waiting time elapsed since the failure of an 

item on condition that this failure had occurred in (0, 𝑡). 

The MWT of 𝑋 can be defined as 

 𝑀𝑋(𝑡) = 𝑡 − [𝜑1(𝑡)/𝐹(𝑡)]. (11) 

By inserting (9) in Equation (11), the MWT of the MOGFr distribution reduces to 

 𝑀𝑋(𝑡) = 𝑡 −
1

𝐹(𝑡)
∑ 𝑑𝑘+1

∞
𝑘=0 𝛼(𝑘 + 1)1/𝛽𝛾 (1 −

1

𝛽
, (𝑘 + 1) (

𝛼

𝑡
)

𝛽

). 

 

3.4 Quantile and generating functions 

 

The quantile function (QF) of 𝑋 is obtained by inverting (4) as  

 𝑥𝑢 = 𝛼 {−
1

𝜂
log (

1−𝑢

1−(1−𝛿) 𝑢
)}

−1

𝛽
, 0 < 𝑢 < 1. (12) 

The median of 𝑋 follows by setting 𝑢 = 0.5 in (12). The MOGFr random variable 



can be Simulated if 𝑈  is a uniform variate on the unit interval (0,1), then the 

random variable 𝑋 = 𝑥𝑢 at 𝑢 = 𝑈  ollows Equation (5). 

 

The moment generating function (MGF) of 𝑋 follows from (6) as 

 𝑀𝑋(𝑡) = ∑ 𝑑𝑘+1
∞
𝑘=0 𝑀𝑘+1(𝑡), 

where 𝑀𝑘+1(𝑡) is the MGF of the Fr distribution with parameters 𝛽  and scale 

parameter 𝛼(𝑘 + 1)1/𝛽. 

 

Afify et al. (2016b) provided a simple representation for the MGF, 𝑀(𝑡), of the 

Fr(𝛼, 𝛽) distribution. 

 

Consider the random variable 𝑌 ∼Fr(𝛼, 𝛽), and let 𝑤 = 1/𝑦, then the MGF of the 

Fr distribution reduces to  

 𝑀(𝑡) = 𝛽𝛼𝛽 ∫
∞

0
exp(𝑡/𝑤)𝑤𝛽−1exp(−𝛼𝛽𝑥−𝛽)𝑑𝑤. 

Using the exponential series for exp(𝑡/𝑤) and after some simplifications, we have  

 𝑀(𝑡; 𝛼, 𝛽) = 𝛽𝛼𝛽 ∫
∞

0
 ∑∞

𝑛=0
𝑡𝑛

 𝑛!
 𝑤𝛽−𝑛−1 exp(−𝛼𝛽𝑥−𝛽)𝑑𝑤 

 = ∑∞
𝑛=0

𝛼𝑛 𝑡𝑛

 𝑛!
 Γ (

𝛽−𝑛

𝛽
). 

The Wright generalized hypergeometric function is defined by  

  𝑝Ψ𝑞 [
(𝛼1, 𝐴1), … , (𝛼𝑝, 𝐴𝑝)

(𝛽1, 𝐵1), … , (𝛽𝑞 , 𝐵𝑞)
;  𝑥] = ∑∞

𝑛=0

∏
𝑝
𝑗=1 Γ(𝛼𝑗+𝐴𝑗 𝑚)

∏
𝑞
𝑗=1 Γ(𝛽𝑗+𝐵𝑗 𝑚)

𝑥𝑚

𝑚!
. 

Then, the MGF of the Fr model is 

 𝑀(𝑡; 𝛼, 𝛽) =1 Ψ0 [(1, −𝛽−1)
−

; 𝛼 𝑡]. (13) 

The MGF of the MOGFr distribution follows, by combining Equations (6) and (13), 

as 

 

 𝑀(𝑡) = ∑ 𝑑𝑘+1
∞
𝑘=0  1Ψ0 [(1, −𝛽−1)

−
; 𝛼 (𝑘 + 1)1/𝛽 𝑡]. 

 

3.5 Order statistics 

 

Let 𝑋1, … , 𝑋𝑛 be a random sample of size n from the MOGFr distribution and let 

𝑋1:𝑛, … , 𝑋𝑛:𝑛 be the corresponding order statistics. Then, the PDF of the of 𝑟th order 

statistic, 𝑋𝑟:𝑛, is defined by  

 𝑓𝑟:𝑛(𝑥) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
 𝑓(𝑥) 𝐹(𝑥)𝑟−1[1 − 𝐹(𝑥)]𝑛−𝑟 . 

Then, the PDF of the 𝑖th order statistic of the MOGFr distribution reduces to 

 



𝑓𝑟:𝑛(𝑥) =
K𝛿𝑛−𝑟+1𝜂𝛽𝛼𝛽𝑥−𝛽−1exp(−𝛼𝛽𝑥−𝛽)

{1−(1−𝛿)[1−exp(−𝛼𝛽𝑥−𝛽)]
𝜂

}
𝑛+1 [1 −

 exp(−𝛼𝛽𝑥−𝛽)]
𝜂(𝑛−𝑟+1)−1

{1 − [1 − exp(−𝛼𝛽𝑥−𝛽)]
𝜂

}
𝑟−1

,             (14) 

where 𝐾 = 𝑛!/(𝑟 − 1)! (𝑛 − 𝑟)!. 
Hence, the PDF of the first order statistic 𝑋1:𝑛 follows from (14) with 𝑟 = 1, as  

 𝑓1:𝑛(𝑥) =
𝑛𝛿𝑛𝜂𝛽𝛼𝛽𝑥−𝛽−1exp(−𝛼𝛽𝑥−𝛽)[1−exp(−𝛼𝛽𝑥−𝛽)]

𝜂𝑛−1

{1−(1−𝛿)[1−exp(−𝛼𝛽𝑥−𝛽)]
𝜂

}
𝑛+1 . 

The PDF of the largest order statistic 𝑋𝑛:𝑛 is given by    

 𝑓𝑛:𝑛(𝑥) =
𝑛𝛿𝜂𝛽𝛼𝛽𝑥−𝛽−1exp(−𝛼𝛽𝑥−𝛽)[1−exp(−𝛼𝛽𝑥−𝛽)]

𝜂−1

{1−(1−𝛿)[1−exp(−𝛼𝛽𝑥−𝛽)]
𝜂

}
𝑛+1   

 × {1 − [1 − exp(−𝛼𝛽𝑥−𝛽)]
𝜂

}
𝑛−1

. 

 

 

4. Maximum likelihood estimation 

 

The estimation of the MOGFr parameters from complete samples only is considered 

by the maximum likelihood method. Let 𝑥1, … , 𝑥𝑛  be a random sample of the 

MOGFr distribution with parameter vector 𝜃 = (𝛼, 𝛽, 𝛿, 𝜂)⊺ 

 

The log-likelihood function for 𝜃 is 

 ℓ = 𝑛𝛽log𝛼 + 𝑛log𝛽 + 𝑛log𝛿 + 𝑛log𝜂 − (𝛽 + 1) ∑𝑛
𝑖=1 log𝑥𝑖 

 −𝛼𝛽 ∑𝑛
𝑖=1 𝑥𝑖

−𝛽
+ (𝜂 − 1) ∑𝑛

𝑖=1 log [1 − exp (−𝛼𝛽𝑥𝑖
−𝛽

)] 

 −2 ∑𝑛
𝑖=1 log {1 − (1 − 𝛿) [1 − exp (−𝛼𝛽𝑥𝑖

−𝛽
)]

𝜂
}. (15) 

 

The maximum likelihood estimators (MLEs) can be obtained by maximizing (15) 

either by using the different programs such as R, SAS or by solving the nonlinear 

likelihood equations obtained by differentiating (15). 

The score vector elements, 𝐔(Θ) =
𝜕ℓ

𝜕𝜃
= (

𝜕ℓ

𝜕𝛼
,

𝜕ℓ

𝜕𝛽
,

𝜕ℓ

𝜕𝛿
,

𝜕ℓ

𝜕𝜂
)⊺, are 

 

 
𝜕ℓ

𝜕𝛼
=

𝑛𝛽

𝛼
+ −𝛽𝛼𝛽−1 ∑𝑛

𝑖=1 𝑥𝑖
−𝛽

+ (𝜂 − 1) ∑𝑛
𝑖=1

𝛽𝛼𝛽−1𝑥𝑖
−𝛽

exp(−𝛼𝛽𝑥𝑖
−𝛽

)

1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)
 

 +2𝜂(1 − 𝛿) ∑𝑛
𝑖=1

𝛽𝛼𝛽−1𝑥𝑖
−𝛽

exp(−𝛼𝛽𝑥𝑖
−𝛽

)[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂−1

1−(1−𝛿)[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂 , 

 



 
𝜕ℓ

𝜕𝛽
= 𝑛log𝛼 +

𝑛

𝛽
− ∑𝑛

𝑖=1 log𝑥𝑖 − 𝛼𝛽 ∑𝑛
𝑖=1  𝑥𝑖

−𝛽
log (

𝛼

𝑥𝑖
) 

 +(𝜂 − 1) ∑𝑛
𝑖=1

𝛼𝛽𝑥𝑖
−𝛽

exp(−𝛼𝛽𝑥𝑖
−𝛽

)log(
𝛼

𝑥𝑖
)

1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)
 

 +
2𝜂(1−𝛿)

𝛼−𝛽
∑𝑛

𝑖=1

[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂−1

𝑥𝑖
−𝛽

exp(−𝛼𝛽𝑥𝑖
−𝛽

)log(
𝛼

𝑥𝑖
)

1−(1−𝛿)[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂 , 

 

 
𝜕ℓ

𝜕𝛿
=

𝑛

𝛿
− 2 ∑𝑛

𝑖=1

[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂

1−(1−𝛿)[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂 

and 

 
𝜕ℓ

𝜕𝜂
=

𝑛

𝜂
+ ∑𝑛

𝑖=1 log [1 − exp (−𝛼𝛽𝑥𝑖
−𝛽

)] 

 +2(1 − 𝛿) ∑𝑛
𝑖=1

[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂

log[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]

1−(1−𝛿)[1−exp(−𝛼𝛽𝑥𝑖
−𝛽

)]
𝜂 . 

The estimates of the MOGFr parameters can be obtained by setting the score vector 

to zero, 𝐔(�̂�) = 𝟎  and solving these equations simultaneously gives the MLEs 

�̂�, �̂�, �̂� and �̂�. The interval estimation of the MOGFr parameters requires the 4 × 4 

observed information matrix 𝐽(𝜃) = {𝐽𝑟𝑠}  for 𝑟, 𝑠 = 𝛼, 𝛽, 𝛿, 𝜂 . The approximate 

confidence intervals for the MOGFr parameters can be provided using the 

multivariate normal 𝑁4(0, 𝐽(�̂�)−1) distribution, where 𝐽(�̂�) is the total observed 

information matrix evaluated at �̂� . Hence, we can determine the approximate 

100(1 − 𝜑)% confidence intervals for 𝛼, 𝛽, 𝛿 and 𝜂 as follows: 

�̂� ± 𝑧𝜑/2√𝐽𝛼𝛼 ,   �̂� ± 𝑧𝜑/2√𝐽𝛽𝛽 ,  �̂� ± 𝑧𝜑/2√𝐽𝛿𝛿    and  �̂� ± 𝑧𝜑/2√𝐽𝜂𝜂 , 

where 𝑧𝜑/2 is the upper 𝜑th percentile of the standard normal distribution.   

 

5. Two applications 

 

In this section, we ilustrate the flexibility and importance of the MOGFr distribution 

empirically by two real data applications. The first data set contains 101 

observations with maximum stress per cycle 31,000 psi. The data refer to the fatigue 

life of 6061-T6 aluminum coupons (Birnbaum and Saunders, 1969). The second data 

set consists of 128 observations of bladder cancer patients which represents the 

remission times (in months) (Lee and Wang, 2003). Table 3 lists the competitive 

models of the MOGFr distribution which will be compared with it. 

 

 



Table 3: Fitted competitive distributions of the MOGFr model 

 Distribution   Author(s)  

Fréchet (special case of MOGFr) (Fr)   Fréchet (1924)  

Transmuted exponentiated Fr (TEFr)   Elbatal et al. (2014)  

Weibull Fr (WFr)   Afify et al. (2016b)  

Kumaraswamy Fr (KFr)   Mead and Abd-Eltawab (2014)  

Marshall-Olkin Fr (MOFr)   Krishna et al. (2013)  

Burr X Fr (BXFr)   Abouelmagd et al. (2018)  

Exponentiated Fr (EFr)   Nadarajah and Kotz (2003)  

Modified Fr (MFr)   Tablada and Cordeiro (2017)  

 

We shall consider the minus log-likelihood (−ℓ̂ ), Kolmogorov Smirnov ( 𝐾𝑆 ) 

statistic, its P-value (𝑃𝑉 ), Cramér-von Mises (𝑊∗) and Anderson-Darling (𝐴∗) 

statistics to compare the fitted distributions. 

Tables 4 and 5 list the values of the MLEs and their corresponding standard errors 

(in parentheses) of the MOGFr parameters and other fitted models parameters. These 

tables also show the values −ℓ̂, 𝐾𝑆, 𝑃𝑉, 𝑊∗ and 𝐴∗ statistics for both data sets. 

In Tables 4 and 5, we compare the MOGFr model with the TEFr, WFr, KFr, MOFr, 

BXFr, EFr, MFr and Fr distributions. We note that the MOGFr model gives the 

lowest values for the −ℓ̂, 𝐾𝑆, 𝑊∗ and 𝐴∗ statistics and the largest value of the 𝑃𝑉 

among all fitted models. Hence, the MOGFr model could be chosen as the best 

model to explain both data sets. 

 
Figure 2: Fitted PDF, CDF, SF and PP plots of the MOGFr distribution for fatigue 

life data 



The histogram of both data sets, and the estimated CDF, SF and PP plots for the 

MOGFr distribution are shown in Figures 2 and 3.  

 

Table 4:  The MLEs, their (SEs) and the −ℓ̂, 𝐾𝑆, 𝑃𝑉, 𝑊∗ and 𝐴∗ measures for 

fatigue life data 

 Model  Estimates −ℓ̂ 𝐾𝑆 𝑃𝑉 𝑊∗ 𝐴∗ 

 MOGFr  108.902, 2.8169, 70.3445, 5.1022 455.193 0.0503 0.9601 0.0366 0.2536 

(𝛼, 𝛽, 𝛿, 𝜂)  (58.3923, 1.8775, 235.69, 5.6138)      

 TEFr  1055.2, 0.9667, 627.01, 0.8162 455.756 0.0592 0.8703 0.0470 0.3036 

(𝛼, 𝛽, 𝑎, 𝑏)  (1994.1, 0.5936, 2767.8, 0.1940)      

 WFr  618.600, 1.5242, 63.6567, 0.4329 456.170 0.0678 0.7415 0.0544 0.3417 

(𝛼, 𝛽, 𝜂, 𝑏)  (802.57, 0.4336, 77.0615, 0.8328)      

 KFr  112.60, 1.5159, 5.7744, 61.705 456.254 0.0670 0.7549 0.0548 0.3475 

(𝛼, 𝛽, 𝑎, 𝑏)  (6475.7, 0.4778, 503.41, 86.662)      

 MOFr  63.101, 10.661, 2738.8 455.739 0.0616 0.8380 0.0606 0.3681 

(𝛼, 𝛽, 𝜃)  (6.0324, 0.8804, 2095.1)      

 BXFr 88.129, 1.3818, 3.4810 456.248 0.0683 0.7333 0.0574 0.3589 

(𝛼, 𝛽, 𝜃)  (18.433, 0.3542, 2.3911)      

 EFr  357.99, 1.5159, 61.699 456.254 0.0670 0.7549 0.0548 0.3475 

(𝛼, 𝛽, 𝜃)  (185.95, 0.4775, 86.602)      

 MFr  36510, 0.8303, 0.0386 463.982 0.1121 0.1579 0.2261 1.2757 

(𝛼, 𝛽, 𝜃)  (14462, 0.0724, 0.0027)      

 Fr  120.78, 5.0574 475.185 0.1329 0.0563 0.4330 2.4970 

(𝛼, 𝛽)  (2.5251, 0.3252)      

 

The plots in these figures show that the MOGFr distribution has a close fits to both 

data sets. 

Figure 4 displays the HRF plots of the MOGFr distribution for both data sets. It is 

seen that, the HRF is increasing for the fatigue life data and upside down bathtub for 

the cancer data. 

 

 

 

 

 

 

 

 

 



Table 5:  The MLEs, their (SEs) and the −ℓ̂, 𝐾𝑆, 𝑃𝑉, 𝑊∗ and 𝐴∗ measures for 

cancer data 

 Model  Estimates −ℓ̂ 𝐾𝑆 𝑃𝑉 𝑊∗ 𝐴∗ 

 MOGFr  10.2062, 0.2993, 62.4976, 10.9617 409.370 0.0297 0.9998 0.0150 0.0932 

(𝛼, 𝛽, 𝛿, 𝜂)  (35.6278, 0.1940, 139.206,13.4102)      

 TEFr  2806.9, 0.2251, 56.336, -0.7044 410.486 0.0366 0.9955 0.0336 0.2374 

(𝛼, 𝛽, 𝑎, 𝑏)  (4498.9, 0.0355, 35.687, 0.2143)      

 WFr  118.595, 0.2088, 36.738, 2.3771 411.511 0.0546 0.8388 0.0634 0.4109 

(𝛼, 𝛽, 𝜂, 𝑏)  (389.26, 0.0773, 88.5041, 1.1208)      

 KFr  0.8244, 0.1635, 9.4232, 596.51 411.117 0.0505 0.8995 0.0524 0.3468 

(𝛼, 𝛽, 𝑎, 𝑏)  (17.890, 0.0546, 33.631, 1310.8)      

 MOFr  0.0475, 1.7248, 4315.3 411.457 0.0399 0.9869 0.0441 0.3189 

(𝛼, 𝛽, 𝜃)  (0.0185, 0.1257, 1076.0)      

 BXFr  1.4349, 0.2867, 1.8324 411.447 0.0509 0.8951 0.0556 0.3771 

(𝛼, 𝛽, 𝜃)  (1.1631, 0.0622, 0.9529)      

 EFr  33212, 0.1998, 180.42 411.339 0.0484 0.9253 0.0522 0.3556 

(𝛼, 𝛽, 𝜃)  (3444.4, 0.0053, 39.489)      

 MFr  16.474, 0.3807, 0.1055 413.524 0.0649 0.6543 0.1192 0.7335 

(𝛼, 𝛽, 𝜃)  (9.3401, 0.0703, 0.0174)      

 Fr  3.2582, 0.7520 444.001 0.1408 0.0125 0.7443 4.5464 

(𝛼, 𝛽)  (0.4074, 0.0424)      

 

Figure 5 shows the TTT plots of the MOGFR distribution for both data sets. 

The TTT plot for fatigue life data is concave which indicates that it has an increasing 

hazard rate, whereas the TTT plot for the cancer data is concave then convex which 

indicates an upside down bathtub hazard rate. Hence, the MOGFr distribution is a 

suitable for modeling both data sets. 



 
Figure 3: Fitted PDF, CDF, SF and PP plots of the MOGFr distribution for cancer 

data 

  

 

 
Figure 4: The HRF plots of the MOGFr distribution for fatigue life data (left panel) 

and for cancer data (right panel) 

 



 
Figure 5: The TTT plots of the MOGFr distribution for fatigue life data (left panel) 

and for cancer data (right panel)  

 

 

6. Conclusions 

 

In this paper, we propose a new four-parameter model called the MarshallOlkin 

generalized Fréchet (MOGFr) distribution, which contains the Fréchet, Marshall-

Olkin Fréchet and exponentiated Fréchet distributions, among others as special 

cases. The MOGFr density function can be expressed as a linear mixture of Fréchet 

densities. Explicit expressions for some of its mathematical quantities including the 

quantile and generating functions ordinary and incomplete moments, mean residual 

life, mean waiting time and order statistics are derived. The MOGFr parameters are 

estimated by the maximum likelihood method. The proposed distribution provides 

better fits than some other nested and non-nested models by using two real data sets. 
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